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LETTER TO THE EDITOR 

Scaling function in the universality class of two-dimensional 
Ising model 

S B Rutkevicb 
Instilute of Physics of Solids and Semicmidnctors, P.Bmvki 17, Minsk, Belams 

Received 21 January 1994 ’ 

Abstrad The fermionic d e l  is considered equivalent in the mitical region to the hw- 
dimensional Ising model in homogenenus magnetic field. The ground state of lhe femionic 
HKniltonaa is obtained from the variadonal principle of the qmmm mechanin. where probe 
states are taken in the ~cs-ljke form. In lhis approximation the explicit representation of the 
scaling function is derived which is charaderized by the wnect values of critical indexes and 
the susceptibilily critical amplihldes ratio C + / C  = 12n. 

Fifty years ago Onsager [I] gave his celebrated exact solution of the two-dimensional Ising 
model for the square lattice in zero magnetic field. Twenty years later Schultz, Mattis and 
Lieb in a remarkable paper [2] proved the equivalence of this model with a certain BCS-like 
onedimensional fermionic model and obtained the solution in a very elegant and simplilied 
manner. Their fermionic treatment turned out to be very fruitful and stimulated greatly 
the further progress in understanding of the critical properties of the Isiig model (see e.g. 
[3,4]). Here we study a simple fermionic model equivalent, in the critical region, to the 
two-dimensional king model in uniform magnetic field. 

Consider the fermionic model defined by the Hamiltonian 

R = R o + V  (14 

v =  -n dxu(x). (14 LL 
Here L is the systems length in the x-direction, @+(x) and @(x) are the Fermi operators 
creating!annihilating a domain wall at a point x .  More precisely, fermion trajectories x(t) 
in the ( x ,  t)-plane correspond to the domain wall lines in the ( x ,  y)-plane (see e.g. [SI). 
Such a wall separates regions with king spin values u ( x ,  y) = +l and u ( x ,  y) = -1. 
Ising spin operator u(x)  is to be expressed in terms of the Fermi operators @+(x)  and 
@(x)  as it is described below. Parameter PO is proportional to the reduced temperature: 
a, = -x t ,  x > 0, I = (T - T,)/T,. The last term in the right-hand side of (16) permits 
us to describe finitesize domains. As it is implied by the fermion analogy, the free energy 
of two-dimensional classical system is proportional to the ground-state energy E of the 
quantum one-dimensional Hamiltonian (1). 
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Figve 1. Rio spin configurations "responding to the s t a b  (2). 

Hamiltonian (1) operates in the Fock-space with basis formed by vectors 

F+(XI)F+(XZ)F+(X3)~~ ' 10). (2) 

Tko spin configurations shown in Egures I(u) and 1(b) correspond to such a state. These 
configurations are !"formed one into another by o v e m  of all the spins. Hence, operator 
a(x) is not well defined in our fermion representation. However, one can easily define the 
product of the two spin operators 

u(x")u(x') = exp[iN(x", x')]  (3) 

where N(x", x ' )  is the operator of the number of domain walls between points X" and x': 

Really, if N(x", x') is even, spins U@') and u(x") are the same, if N(x", x' )  is odd, spins 
U@') and u(x") have opposite direction. Relation (3) leads to the needed formula for the 
spontaneous magnetization M(@) in a translationary invariant state 10): 

The model (1) in zero field H = 0 was considered in [6], where it was shown that 
it is of the Ising universaliry classt. In this case the Hkiltonian is diagonalized by the 
Bogoliubov transformation and the ground state has the BCS-form: 

10) = exp [ f drl drzrlr+(xl)~+(xz)~(x~ - x z ) ]  IO) ( 6 4  

where 

G ( x )  = / gAo@)exp(ipx) (6b) 

. t For analogous discrete model and the same representation of Ising spin operaton this result was obtained earlier 
by Bohr [7l. 
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If H # 0, one cannot diagonalize Hamiltonian (1). Instead let us use the variational 
principle of the quantum mechanics: the ground-state energy E of Hamiltonian (1) is qual 
to the minimum value of the functional f(Q) given by 

E = min f(@) 03) 

where the state IQ) is assumed translationary invariant. Now we adopt the basic 
approximation contracting the class of varying states in (7b) to the BCSlike states only. 
Thus, we suppose, that in the critical region (for small values of t and H )  the ground state 
can be fairly approximated by formulae (6a) and (6b) where, however, the function A&) 
is replaced by the unknown varying function A@). We adopt that this function is of the 
Morse class represented by the function A&) in the ordered phase i& z 0 (see figure 2). 
This is an odd function going to zero as x + &CO and having a single m i n i ”  in the 
half-line p =- 0 with the value -Am 

0 

0. 

Figure 2. The funuion hoe) m the low-temperature phase S2o > 0. 

Both terms in ( 7 4  can be exactly calculated for such a state. This is obvious for the 
fast one, since Ro is quadratic in + and ++. For the magnetization (5) in the BCS-state 
described above, the following representation is valid 

where 

and pj (A)  are the solutions of the equation h ( p )  JP=p A, 0 < p~ < pz < m. The 
integration path in (8b) is slightly shifted into the upper half-plane. 

Thus, we have the integral representation for the functional f(A) = f(@(A)). Varying 
it with respect to A ( p )  one obtains the nonlinear singular equation defining A@): 
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where q ( p )  is the angle of the Bogoliubov transformation: A(p)  = tan[(o(p)l. Integration 
in (9) and in the further equation (12) is understood in the sense of the Cauchy principal 
value. Substituting the solution of the above equation into the relation (8) we obtain the 
equation of states in the adopted approximation. In the critical region it can be written in 
the form of the well known scaling relation proposed by Griffiths 191: 

H = const .M'5h(x,). - (10) 

Here x, is the familiar scaling variable 

that lies in the interval -1 < x. e 00 for equilibrium states. The scaling function h(xJ is 
constructed as follows. 

Denote by p(p; y.) the solution of the nonlinear singular equation 

with boundary conditions q(m; ys) =.-n/4, q(-co; ys) = n/4. The parameter ys is given 
by 

2MHP 
Ys = - a; 

Scaling variable x, is related to ys by 

where A,,, is the maximum value of the function A@) given by 

A@) = Y d .  (15) 

The function u(A) is defined via 

cu,(A) [ q ( A )  

if -1 < A < 0 
if -A, c A < -1. a(A) = 

The functions s(A)  ( j  = 0,1,2) are given by the relation (86). where for j = 1,2 A(p)  
is taken in the form (15), whereas for j = 0 A(p)  is the rescaled zero-field function in the 
low-temperature phase (compare with (6c)): 

1-J;;"TI 
= P 

Though the integral in (86) defining cuj(A) has logarithmic divergence at large q. diverging 
terms cancel each other in the square brackets in the right-hand side of (14). 
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In deriving (14) we divided the magnetization M(Qo, H )  given by (84  by the similar 
M(ISlo[, 0) and have 

MO ZZ (18) 

Thus, the relation (14) defines the function x&). The inverse function y&) with 

(19) 

Now let us discuss some consequences following immediately from the obtained results. 
(1) First, it is clear from the above consideration, that the derived equation of states is 

characterized to be correct king critical exponents ,9 = 118 and 6 = 15. Further, certain 
more or less straightforward perturbation theory calculations lead to the critical asymptote 
of the magnetic susceptibility x = aM/BH in the high- and low-temperature phases: 

expression €or the zero-field magnetization in the ordered phase MO 
taken into account that the latter can be reduced to 

in the critical region [6]. 

prefactor x: gives the desired scaling function 
2 

Wxs) = X,Y&). 

x* = CiItl-7’4 (20) 

with 

I 
Thus, we obtain the expected values of exponents y and y‘ (y  = y’ = 7/4) as well as the 
universal ratio of critical amplitudes: 

C+/C- = 12x = 37.699 111 843, (21) 

The latter is very close to the value 37.6936 given by Barouch, McCoy and Wu [9]. 
(2) Somewhat less precise, and yet more simple expression approximating the scaling 

function hfx.) was derived in the paper [lo]. It leads to the value C+/C- = 38.635 and 
exhibits a good agreement with the interpolation f m u l a  proposed by Gaund and Domb 
[U] (see the plot of both curves in figure 3 of [lo]). 

(3) It is interesting to note that the obtained equation of states also describes metastable 
states in the low-temperature phase with oppositely directed external magnetic field and 
magnetization. Really, if t 0, the equation (12) has appropriate solution ~ ( p ;  ys) in 
the case of negative y,, at least for small enough values of lyJ. Hence, one can continue 
the scaling function h(x,) to the left from the point xs = -1, where h(x,) changes the 
sign, down to the point xs = x,, x,, c -1, where the system becomes locally unstable: 

(4) Let us describe the region in the (H, t)-plane, where the equation of state has the 
scaling form (10). 

The equation (9) becomes invariant with respect to the scaling transformation a0 --t 

hQ0, p + hp, H M  + hZHM in the low-momentum region IpI << pm. pm = m, 
where the term sp2 in (9) can be omitted. In this low-momentum region the solution p(p) 
of equation (9) varies essentially on the scale p 5 e-’ (6 is the correlation length, see 
figure 3) approaching then the value (-z/4): 

aH/aMi , ,  = 0. 

P Qo HM 
p(p) E -- + - + - 4 2rp 2rp2‘ 

P >z 5-1. 
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Estimate from (22) the inverse correlation length: 

In the well defined scaling region the cut-off momentum pm is to be much larger then the 
inverse correlation length (23). Thus, we have two inequalities giving the bound of the 
scaling region: 

Rewrite the latter inequality as 

It is rather surprising that in every neighbourhood of the critical point t = 0, H = 0 we 
iind states (H, T), where the scaling invariance breaks down. 

Figure 3. Solutions c@) of the equation (9) in the low-momentum maon IpI < 
the l ow- tempem phase % > 0 (I), and in the high t e m p e m  phase no c 0 (2). 

in 

In conclusion, we obtained representation for the scaling function of the fermionic 
model which is equivalent in the critical region to the two-dimensional king model in 
uniform magnetic field. The. evaluation procedure is not absolutely rigorous, being based 
on the assumption (64 of the scs-like structure of the ground state. However, the above 
approximation appears to be adequate to the critical region, and it is quite possible, that the 
derived representation (12), (14), (19) of the scaling function is the exact one. 

This work is supported by the Fund of Fundamental Investigations of Republic of Belarus. 
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